1. Weird things like the one described above do not happen on a ramdom basis becuause molecules usually move within any enclosure in a ramdom manner. Thus, it is not possible for some types of particles to aggregate in one point while other types of molecule aggreagate in another point. Based on the kinetic energy that is available for each particle, each particle will move random
through the available space, colliding with one another and with the wall of container.
2. It will be a difficult thing to live in a Maxwell' demon world because, things will happen unpredictably and one will never know what to expect next because anything can happen at anytime. For instance, if one is drinking a glass of water, some of the particles of the water may just decide to aggregate to one part of the cup and start boiling. So, for someone who is taking a glass of water, the water may start boiling right inside his mouth when he is drinking, that will be a bad experience. When one is driving a car, the petrol particles may just decide to freeze up when one is busy speeding on the highway; that can cause a very serious accident. Thus, a world where the Maxwell law operates will be a chaotic world.
Answer:
gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
Explanation:
Answer:
1.811 g
Explanation:
The computation of the mass need to use to make the solution is shown below:
We know that molarity is

So,


= 0.031 moles
Now

where,
The Molecular weight of NaCl is 58.44 g/mole
And, the moles are 0.031 moles
So, the mass of NaCL is

= 1.811 g
We simply applied the above formulas
The answer is 9.03 × 10²⁴<span> molecules.
</span><span>Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance.
Make the proportion.
</span><span>6.02 × 10²³ molecules per 1 mol
</span>x per 15 mol
6.02 × 10²³ molecules : 1 mol = x : 15 mol
x = 6.02 × 10²³ molecules * 15 mol * 1 mol
x = 90.3 × 10²³ molecules
x = 9.03 × 10 × 10²³ molecules
x = 9.03 × 10²³⁺¹ molecules
x = 9.03 × 10²⁴ molecules