0.33 seconds is the period of a wave with a frequency of 3 Hz and an amplitude off 0.01 .
<u>Explanation:</u>
We have , period of a wave with a frequency of 3 Hz and an amplitude off 0.01 . We know that period of a wave is amount of time needed to complete one oscillation . In order to calculate period of wave we use frequency and the formula use is
. We are given that frequency = 3 Hz:

⇒ 
⇒ 
⇒ 
Therefore, 0.33 seconds is the period of a wave with a frequency of 3 Hz and an amplitude off 0.01 .
The low temperature outside lowers the volume of the gas according to Charles' law because this law describes how a gas will behave at constant pressure. It shows that the volume of a given mass of a gas is directly proportional to the absolute temperature provided the pressure remains constant. An increase in temperature leads to an increase in volume while a decrease reduces the volume. This is due to the reduction in the distances traveled by the vibrating particles of the gas because of the lost kinetic energy.
Answer:
The percent composition is 21% N, 6% H, 24% S and 49% O.
Explanation:
1st) The molar mass of (NH4)2SO4 is 132g/mol, and it represents the 100% of the mass composition.
In 1 mole of (NH4)2SO4, there are:
- 2 moles of N.
- 8 moles of H.
- 1 mole of S.
- 4 moles of O.
2nd) It is necessary to calculate the mass of each element, multiplying its molar mass by the number of moles:
- 2 moles of N (14g/mol) = 28g
- 8 moles of H (1g/mol) = 8g
- 1 mole of S (32g/mol) = 32g
- 4 moles of O (16g/mol) = 64g
3rd) With a mathematical rule of three we can calculate the percent composition of each element in the molecule of (NH4)2SO4:




In this case, we can calculate the percent composition of Oxygen by subtracting the other percentages, since the total must be 100%.
So, the percent composition is 21% N, 6% H, 24% S and 49% O.
english:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time.
spanish:
En física y química, la ley de conservación de la energía establece que la energía total de un sistema aislado permanece constante; se dice que se conserva con el tiempo.