1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
7

PLEASE HELP ASAP What is the best name for this molecule? Explain your naming process.

Chemistry
1 answer:
Evgesh-ka [11]3 years ago
6 0
Answer is: 4-ethyl-1-heptene.

Structure of this alkene is in Word document attached.
<span>First find main chain with longest number of carbon atoms, that is chain with seven carbon atoms and it start on the right and going up the three-carbon attachment.
Main chain has double bond between first and second carbon (</span><span>the lowest number)</span><span>, so it is 1-heptene (alkene).
</span>Substituent is on fourth carbon atom, it is alkyl group with two carbon atoms (ethyl).
Download docx
You might be interested in
Instrumental methods need only a microscopic sample to return an accurate result. Why is this so?
uranmaximum [27]
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
3 0
3 years ago
Which statement describes the energy involved in diffusion? Diffusion requires energy in all cases. Diffusion requires energy on
MArishka [77]

Answer:

Both b and d can be correct

Explanation:

Generally, diffusion does not require energy (<em>making option a wrong</em>) because it is the movement of particles from a region of high concentration to a region of low concentration hence diffusion moves particles in the direction of a concentration gradient. An example of this is the passive transport (for instance, uptake of glucose by a liver cell).

However, in some cases, when diffusion is against the concentration gradient (i.e when particles move from a region of low concentration to a region of high concentration), diffusion will require energy in a case like this (<em>making option c wrong</em>). An example of this is active transport (transport of protein called sodium-potassium pump which involves pumping of potassium into the cell and sodium out of the cell).

The explanation above shows that diffusion can require energy to move particles (in or out) of the cell through the cell membrane.

3 0
3 years ago
Read 2 more answers
What is the hybridization of bromine in BrO2-?
kap26 [50]
<span>The hybridization of bromine must be sp^3.</span>
5 0
3 years ago
Read 2 more answers
The reaction 2NO(g)+O2(g)−→−2NO2(g) is second order in NO and first order in O2. When [NO]=0.040M, and [O2]=0.035M, the observed
Oksanka [162]

Answer:

(a) The rate of disappearance of O_{2} is: 4.65*10^{-5} M/s

(b) The value of rate constant is: 0.83036 M^{-2}s^{-1}

(c) The units of rate constant is:  M^{-2}s^{-1}

(d) The rate will increase by a factor of 3.24

Explanation:

The rate of a reaction can be expressed in terms of the concentrations of the reactants and products in accordance with the balanced equation.

For the given reaction:

2NO(g)+O_{2}->2NO_{2}

rate = -\frac{1}{2} \frac{d}{dt}[NO] = -\frac{d}{dt}[O_{2}] = \frac{1}{2}\frac{d}{dt}[NO_{2}] -----(1)

According to the question, the reaction is second order in NO and first order in  O_{2}.

Then we can say that, rate = k[NO]^{2}[O_{2}] -----(2)

where k is the rate constant.

The rate of disappearance of NO is given:

-\frac{d}{dt}[NO] = 9.3*10^{-5} M/s.

(a) From (1), we can get the rate of disappearance of O_{2}.

    Rate of disappearance of  O_{2} = -\frac{d}{dt}[O_{2}] = (0.5)*(9.3*10^{-5}) M/s = 4.65*10^{-5} M/s.

(b) The rate of the reaction can be obtained from (1).

    rate = -\frac{1}{2} \frac{d}{dt}[NO] = (0.5)*(9.3*10^{-5})

    rate = 4.65*10^{-5} M/s

   The value of rate constant can be obtained by using (2).

    rate constant = k = \frac{rate}{[NO]^{2}[O_{2}]}

    k = \frac{4.65*10^{-5}}{(0.040)^{2}(0.035)} = 0.83036 M^{-2}s^{-1}

(c) The units of the rate constant can be obtained from (2).

    k = \frac{rate}{[NO]^{2}[O_{2}]}

    Substituting the units of rate as M/s and concentrations as M, we get:

\frac{Ms^{-1} }{M^{3}} = M^{-2}s^{-1}

(d) The reaction is second order in NO. Rate is proportional to square of the concentration of NO.

     rate\alpha [NO]^{2}

If the concentration of NO increases by a factor of 1.8, the rate will increase by a factor of (1.8)^{2} = 3.24

     

5 0
3 years ago
Combustion is an exothermic reaction where the reactants are combined with ____
Anna [14]

Answer:

sorry to waste ur time but im getting points bc i have a question and i need more points to say ig

7 0
3 years ago
Other questions:
  • How many significant digits are there in the measurement of 9478.983560 cm
    6·1 answer
  • 10 Points! Help please!
    12·1 answer
  • How many ml of a .4 % solution of nalorphine must be injected to obtain a dose of 1.5 mg
    9·1 answer
  • Tornadoes can be identified and tracked using advanced instruments that can detect small changes in wind velocity and air pressu
    14·1 answer
  • A solution has pOH 5.9
    12·2 answers
  • A new penny has a mass of 2.49 g and a volume of 0.349 cm3. Is the penny made of pure copper?
    7·1 answer
  • If you reply with a link, I will report you​
    13·1 answer
  • A 45.7 block of an unknown metal at 74.2 °C is placed in 72.9 g of water at 15.9 °C. If the
    5·1 answer
  • SHOW WORK
    13·1 answer
  • How many grams are there in 3.4 x 10^24 atoms of He?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!