Answer:
20.2 seconds
Explanation:
The airplane (and therefore the crate) initially has no vertical velocity, so v₀ = 0 m/s.
The crate is in free fall, so a = -9.8 m/s².
The crate falls downward, so Δx = -2000 m.
Find: t, the time it takes for the crate to land.
Δx = v₀ t + ½ at²
-2000 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 20.2 s
It takes 20.2 seconds for the crate to land.
Answer:
183333 Pa
Explanation:
The weight of the football player is : 550 N ,thus the force the player exerts on the floor is 550 N
The area of blades in contact with the floor is = 30cm² = 0.003 m²
Pressure = Force / Area
Pressure = 550 / 0.003
Pressure = 183333 Pa
Using the formula: E = kQ / d² where E is the electric field, Q is the test charge in coulomb, and d is the distance.
E = kQ / d²
k = 9 x 10^9 N-m²/C²
Q = 6.4 x 10^-5 C
d = 2.5 x 10^-2 m
Substituting the given values to the equation, we have:
E = (9 x 10^9)(6.4 x 10^-5) / (2.5 x 10^-2) ²
Electric field at the test charge is 921600000 N/C
Answer:
2856.96 J
0
0

6.78822 m/s
Explanation:
= Initial velocity = 9.6 m/s
g = Acceleration due to gravity = 9.81 m/s²
h = Height
The athlete only interacts with the gravitational potential energy. Air resistance is neglected.
At height y = 0
Kinetic energy

At height y = 0 the potential energy is 0 as

At maximum height her velocity becomes 0 so the kinetic energy becomes zero.
As the the potential and kinetic energy are conserved
The general equation

Half of maximum height



The velocity of the athlete at half the maximum height is 6.78822 m/s