Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
F=mass x acceleration = ma= 0.8*20 = 16N
The kinetic energy of an object is given by:

where m is the mass of the object and v its velocity.
The car in this problem has a mass of m=600 kg and a velocity of v=10 m/s, therefore if we put these numbers into the equation, we find the kinetic energy of the car:
75km
I dont really know how to do the math but thats what my teacher told me when i asked
<u>Answer:</u>
The stopping car has negative acceleration.
<u>Explanation:</u>
We know acceleration is the rate of change of velocity. That is
Acceleration(a) = ( Final velocity - Initial velocity )/ Time taken.
Here Final velocity = 0 km/h( car stops) and initial velocity = 30 km/h
So acceleration = (0-30)/time = -30/ time
Time is always positive , so -30/time is negative, so the stopping car has negative acceleration.