To solve this problem it is necessary to simply apply the concepts related to cross-multiply and proportion between units.
Let's start first by relating the amount of dose needed to be supplied per hour, in other words,
The infusion of 250ml should be supplied at a rate of 75ml / hour, so what amount x of mg hour should be supplied with 50Mg.




Converting to mcg units we know that 1mg is equal to 1000mcg and that 1 hour contains 60 min, therefore



The dose should be distributed per kilogram of the patient so if the patient weighs 72.4kg,


Therefore the client will receive 3.5mcg/kg/min.
Answer:
Specific heat of water is 4.186 J/g/C. The heat required to raise the temperature by
is
Here is mass of water being heated, specific heat of water and change in temperature.
Here .
Heat energy required is
Explanation:
Slide with her left foot. hope this is helpful
Weight of an object is given by the formula W = m x g , where
m : mass of the object
g : gravitational acceleration
It is <u>independent of the horizontal </u><u>acceleration</u>.
<h3>What do we mean by weight of an object?</h3>
Weight is a gauge of how strongly gravity is<u> pulling something down.</u> It is dependent on the object's mass, or how much matter it consists of. It also depends on the <u>object's uniformly distributed</u> downward acceleration caused by gravity.
This equation can be used to express weight:
W = m x g
<h3>What is the difference between weight and mass of an object?</h3>
In everyday speech, the phrases "mass" and "weight" are frequently used interchangeably; nevertheless, the two concepts don't have the same meaning. In contrast to weight, which is a <u>measurement of</u> how the <u>force</u> of gravity works upon a mass, mass is the <u>amount of substance</u> in a material.
To learn more about gravity and acceleration :
brainly.com/question/13860566
#SPJ4
Answer:
7.39 m or 3.61 m
Explanation:
= Wavelength
f = Frequency = 90 Hz
v = Speed of sound = 340 m/s
Path difference of the two waves is given by

Velocity of wave


So, the location from the worker is 7.39 m or 3.61 m