Answer:
"How does the volume of a gas kept at constant pressure change as its temperature is increased?"
Explanation:
One possible question can be:
"How does the volume of a gas kept at constant pressure change as its temperature is increased?"
The answer to this question is contained in Charle's law, which states that for a gas at constant pressure, the volume of the gas is proportional to its absolute temperature:

Or also written as

By looking at this equation, we can find immediately the answer to our question: as the (absolute) temperature of the gas increases, the volume increases as well, by the same proportion.
Answer:
Answer is: c. It must lose two electrons and become an ion.
Magnesium (Mg) is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons (two valence electrons).
Magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
Explanation:
Answer:
They are all a cycle!
Explanation:
They just are all cycles.
Answer:
1.1ohms
Explanation:
According to ohms law E = IR
If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5
I = 0.36A (This will be the load current).
Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.
Voltage drop = 2.2V - 1.8V = 0.4V
Then we calculate the internal resistance using ohms law.
According to the law, V = Ir
V= voltage drop
I is the load current
r = internal resistance
0.4 = 0.36r
r = 0.4/0.36
r = 1.1 ohms
The direction of a vector multiplied by a scalar is only affected if the scalar is negative, in which case the vector will now be in the opposite direction. If the scalar is positive, the vector will only change in magnitude