Answer:
Explanation:
L 1: front radius 950 mm, rear radius 2700 mm, refractive index 1.528;
We shall use lens maker's formula , that is
1/f = (μ-1) ( 1/R₁ - 1/R₂) , μ is refractive index of the lens , R₁ and R₂ are radius of curvature of front and rear curved surface.
1/f₁ = (1.528-1)( 1/950 + 1/2700)
f₁ = 1331 mm
L2: front radius 535 mm, rear radius 500 mm, refractive index 1.550.
1/f₂ = (1.550-1)( 1/535 + 1/500)
f₂ = 470 mm
largest angular magnification possible
= f₁ /f₂
= 1331 / 470
= 2.83 ( approx )
Length between two lenses
=1331 +470
= 1801 mm
= 1.8 m Ans
Answer:
E=h.f
=5.2×1014×6.63×10^-34
E=3.496×10^-30 J
<u>Answers</u>
(a) 6.75 Joules.
(b) 5.27 m/s
(c) 0.75 Joules
<u>Explanation</u>
Kinetic energy is the energy possessed by a body in motion.
(a) its kinetic energy at A?
K.E = 1/2 mv²
= 1/2 × 0.54 × 5²
= 6.75 Joules.
(b) its speed at point B?
K.E = 1/2 mv²
7.5 = 1/2 × 0.54 × V²
V² = 7.5 ÷ 0.27
= 27.77778
V = √27.77778
= 5.27 m/s
(c) the total work done on the particle as it moves from A to B?
Work done = 7.5 - 6.75
= 0.75 Joules
Answer:
= 1000 hours
Explanation:
Earth's circumference is 10⁴ mile
speed of a sailboat is 10¹ mile/hour
distance = speed × time
10⁴ = 10¹ × t
t = 10⁴ / 10¹
t = 10³
= 1000 hours
Answer:
Explanation:
Tension provides centripetal force in the circular motion . In circular motion work done by force = torque x angle
torque is zero as , centripetal force passes through axis of rotation that is center.
So work done by centripetal force = 0
So work done by tension on M = 0