This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
<span>The element bromine has two isotopes: Br-79 and Br-81, with a 50%-50% isotopic abundance. Statistically, 25% of bromine molecules will be Br79-Br79, 25% will be Br81-Br81 and 50% will be Br79-Br81. This is equivalent to a ratio of 1:1:2 or 1:2:1. The peaks in a mass spectrum just like chromatography reflect this relative abundance of different isotopic combinations.</span>
No,because they may have more particles
A. it can be modified or rejected
Answer:
5.024 years
Explanation:
T1 = 1 year
r1 = 150 million km
r2 = 440 million km
let the period of asteroid orbit is T2.
Use Kepler's third law
T² ∝ r³
So,


T2 = 5.024 years
Thus, the period of the asteroid's orbit is 5.024 years.