The force is -12,000 N
Explanation:
First of all, we calculate the acceleration of the ball, by using the following suvat equation:

where:
v = 0 is the final velocity of the baseball (it comes to rest)
u = 40 m/s is the initial velocity
a is the acceleration
s = 2.0 cm = 0.02 m is the displacement of the ball
Solving for a,

Now we can calculate the average force exerted on the ball, by using Newton's second law:

where
m = 300 g = 0.3 kg is the mass of the ball
is the acceleration
Substituting,

where the negative sign indicates that the direction of the force is opposite to the direction of motion of the ball.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
same
Explanation:
Acc. to Einstien's postulate of special theory of
Relativity ,
Velocity of the light beam is same in all frames of references
(a) If the freight car is at rest
The frame we can assumed as Non - inertial frame of reference
s
In the inertial frame of reference , velocity of the light beam has its own value as : 3 x 10^8 m/s
(b) If the freight car is moving , the frame we can assumed as Non -inertial frame of reference
In thus case also , The velocity of the light beam will also have the same value as ; 3 x 108 m/s
The image mentioned is in the attachment
Answer: a) P = 2450 Pa;
b) P = 2940 Pa;
c) F = 4.9 N
Explanation:
a) Pressure is a force applied to a surface of an object or fluid per unit area.
The image shows a block applying pressure on the large side of the piston. The force applied is due to gravitation, so:
P = 
P = 
P = 
P = 2450 Pa
The pressure generated by the block is P = 2450 Pa.
b) A static liquid can also exert pressure and can be calculated as:
ρ.g.h
where
ρ is the density of the fluid
h is the depth of the fluid
g is acceleration of gravity
600.9.8.0.5
2940 Pa
The pressure in the fluid at 50 cm deep is
2940 Pa.
c) For the system to be in equilibrium both pressures, pressure on the left side and pressure on the right side, have to be the same:

= 
F = 
Adjusting the units,
= 0.002 m².
F = 
F = 4.9 N
The force necessary to be equilibrium is F = 4.9 N.
Answer:
The number is 
Explanation:
From the question we are told that
The wavelength is 
The length of the glass plates is 
The distance between the plates (radius of wire ) = 
Generally the condition for constructive interference in a film is mathematically represented as
![2 * t = [m + \frac{1}{2} ]\lambda](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%5Clambda)
Where t is the thickness of the separation between the glass i.e
t = 0 at the edge where the glasses are touching each other and
t = 2d at the edge where the glasses are separated by the wire
m is the order of the fringe it starts from 0, 1 , 2 ...
So
![2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20d%20%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=> ![2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20%20%20%282.8%20%2A10%5E%7B-5%7D%29%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=>

given that we start counting m from zero
it means that the number of bright fringes that would appear is

=> 
=> 