The question is poor. Light doesn't refract on its way THROUGH anything. It refracts at the boundary BETWEEN two different media. The effect is greatest where the ratio of the speeds of light in the two media is greatest. On your list, that would be at the boundary between air or space and glass.
I suppose right answer is d because staellite means an object that move around the larger object and Jupiter also moves around the Sun
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
Planets orbit the sun in the paths which are known as elliptical orbit. Each planet has its own orbit around the sun and direction in which all the planets orbit around the sun are the same. These orbits were well explained by the astronomer Kepler. The gravity of the Sun keeps the planets in their orbits. They stay in their orbits because there is no other force in the Solar System which can stop them.