<span>Assuming that the momenta of the two pieces are equal: when they have equal velocities, then
the masses of the two pieces are also equal.
Since there is no force from outside of the system, the center of mass moves on with the same velocity as before the equation. So the two pieces must fly at the side side of the mass center, i.e., they must always be at 90° to the side of the mass center. Otherwise it would not be the mass center, respectively the pieces would not have equal velocities.
This is only possible, when the angle of their velocity with the initial direction is 60°.
Because, cos (60°) = 1/2 = v/(2v).</span>
Answer:
The statement is incorrect because, a force acting on an object does not necessarily have to produce motion.
People have the misconception that when a force acts on an object it always produces motion
Explanation:
The statement is incorrect because, a force acting on an object does not necessarily have to produce motion. It could be in static equilibrium where the net force is zero and produces not motion. The body could also be in dynamic equilibrium when no net force acts on it moving at a constant velocity. But here we are concerned with static equilibrium since the body does not move at all.
People have the misconception that when a force acts on an object it always produces motion and, we have seen from the above tat its not always true.
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
<u>Input our values:</u>
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
<u>Divide both sides by 400 to isolate t:</u>
<u />
= 
t = 7.5 (s)
<u>It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.</u>
<u></u>
If you have any questions on how I got to the answer, just ask!
- breezyツ
Explanation:
The magnetic needle of a compass lines up with Earth's magnetic poles.
Answer:
B)8
Explanation:
In the first energy level you can have, at most, 2. Every energy level after that wants to have 8 electrons. Valence electrons I believe.
Hope this helps, have a nice day! (^-^)