Well if you had either the velocity or distance traveled i could tell you. But since you haven't all i can say for sure is that the water slowed the bullet down to 13m/s so lets say you knew the distance you would calculate how many meters it traveled and you would have your answer because in this situation, meters (height) =how many seconds spent going into the air.
Answer:
Lifetime = 4.928 x 10^-32 s
Explanation:
(1 / v2 – 1 / c2) x2 = T2
T2 = (1/ 297900000 – 1 / 90000000000000000) 0.0000013225
T2 = (3.357 x 10^-9 x 1.11 x 10^-17) 1.3225 x 10^-6
T2 = (3.726 x 10^-26) 1.3225 x 10^-6 = 4.928 x 10^-32 s
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.