Answer:
As per the law of conservation of angular momentum, the angular velocity will be higher for the body with a lower moment of inertia and vice versa.
Explanation:
Angular momentum L of a body is given by:

Now when the same angular momentum is transferred to two different bodies with different moment of inertia, the body with a higher moment of inertia will have lower angular velocity and vice versa.
Answer:
C. Theories
Explanation:
Theories basically explain why of research findings. By definition, theories help us understand, explain, and predict the occurrence of a phenomena. In research, theories support research findings by explaining how the variables involved influence each other not merely based on observation during this one experiment. It also helps validate the findings by relating it to theories of previous work.
Answer:
the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Explanation:
Given the data in the question;
To determine the maximum intensity of an electromagnetic wave, we use the formula;
=
ε₀cE
²
where ε₀ is permittivity of free space ( 8.85 × 10⁻¹² C²/N.m² )
c is the speed of light ( 3 × 10⁸ m/s )
E
is the maximum magnitude of the electric field
first we calculate the maximum magnitude of the electric field ( E
)
E
= 350/f kV/m
given that frequency of 60 Hz, we substitute
E
= 350/60 kV/m
E
= 5.83333 kV/m
E
= 5.83333 kV/m × (
)
E
= 5833.33 N/C
so we substitute all our values into the formula for intensity of an electromagnetic wave;
=
ε₀cE
²
=
× ( 8.85 × 10⁻¹² C²/N.m² ) × ( 3 × 10⁸ m/s ) × ( 5833.33 N/C )²
= 45 × 10³ W/m²
= 45 × 10³ W/m² × (
)
= 45 kW/m²
Therefore, the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Answer:
The magnitude of the centripetal force that acts on him
Explanation:
Given that,
Mass = 80.0 kg
Distance = 6.10 m
Speed = 6.80 m/s
We need to calculate the magnitude of the centripetal force that acts on him
Using formula of the centripetal force

Where, F = force
m = mass
v = speed
r = distance
Put the value into the formula


Hence, The magnitude of the centripetal force that acts on him
Answer:
<em>Nitrogen</em>
Explanation:
<u>Composition of the Atmosphere</u>
The atmosphere contains several gases, most of them in small amounts, which may include some pollutants and greenhouse gases.
The most abundant gas in the atmosphere is nitrogen (78%), followed by oxygen (21%) as the second. The inert gas called Argon is the third most abundant gas in the atmosphere (less than 1%).
Finally, the fourth most abundant gas in Earth's atmosphere is Carbon dioxide