The answer is no I’ve not done that
Answer:
955.5N
Explanation:
The normal force is given by the difference between the centripetal force and gravity at the top of the loop:

mass m = 65kg
radius of the loop r = 4m
velocity v = ?
g = 9.8 m/s²
To find the centripetal force, you need to find the velocity of the car at the top of the loop.
Use energy conservation:

At the top of the hill:

At the top of the loop:

Setting both energies equal and canceling the mass m gives:

Solving for v:

Using v in the first equation:

The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
The Nucleus contains Protons and Neutrons.
The Neutrons does not have a charge.
The Protons are positively charge.
Hence the charge on the Nucleus, would be the charge of the proton, which is positive.
Hence Nucleus is Positively Charged.