Answer:
V₂=4.57 x 10³ L
Explanation:
Given that
V₁= 2.88 x 10³ L
P₁=722 mm Hg
T₁ = 19°C
T₁ =292 K
P₂=339 mm Hg
T₂= - 55°C
T₂=218 K
Lets take final volume = V₂
We know that ideal gas equation
PV = m R T
By applying mass conservation


V₂=4.57 x 10³ L
Therefore volume will be 4.57 x 10³ L
Answer: 653.33 nm ; 1875, 24 nm
Explanation: For the first case we have to use the Balmer series for the hydrogen when the atom falls from the n = 3 to the n = 2. So for the second transtions for the hydrogen we use the Paschen serie. To do the calculation we need to know the Ryberg constant that is equal to 1.097 * 10^7 m^-1. In the attach is shown the expression for spectral series used for calculation.
Answer:
B
Volume decreases due to less molecular motion of the gas inside the football.
Explanation:
Assuming that the atmospheric pressure (and therefore, the pressure of the air inside the football) remains constant, this means that we can apply Charle's law, which states that:
"For a fixed amount of gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
In the winter month, the air becomes colder, which means that the temperature of the air (and of the gas inside the football) decreases. As the average kinetic energy of the molecules of a gas is proportional to its absolute temperature, this also means that there will be less molecular motion in the gas, and therefore (as stated by Charle's law) the volume of the gas also decreases.
Explanation:
When the metal bar oscillates between the poles of a magnet, it experience a change in the magnetic flux ( no of magnetic field lines passing through the metal bar) as it enter or leaves the magnetic field of the poles. As we know that the change in magnetic field induces the electric current in the metal bar (conductor). By considering the lenz law which states that the direction of induced current in the conductor will be such that as to oppose the initial magnetic field that is producing it. This opposing force acting on the metal bar will damp the oscillations of the bar between the poles of a magnet.
Answer:
I'm not really sure but I think it is
four