The body produces Buffers that can neutralize acids
To solve this problem we will consider the concepts related to the normal deformation on a surface, generated when the change in length is taken per unit of established length, that is, the division between the longitudinal fraction gained or lost, over the initial length. In general mode this normal deformation can be defined as

Here,
= Change in final length
and the initial length 
PART A)




PART B)




PART C)




Therefore the rank of this deformation would be B>C>A
The power that must be delivered to the object by the force is 50 W
Power is defined as the rate of doing work. The power of an object in relation to the force and velocity is given by the following equation:
Power (P) = Force (F) × velocity (v)
P = F × v
From the question given above, the following data were obtained:
- Force (F) = 10 N
- Velocity (v) = 5 m/s
- Power (P) =?
P = F × v
P = 10 × 5
<h3>P = 50 W </h3>
Thus, the power that must be delivered to the object by the force is 50 W
Learn more on power: brainly.com/question/19539420
Answer:
0.000314 Am²
6.049*10^-7 T
Explanation:
A
From the definitions of magnetic dipole moment, we can establish that
= , where
= the magnetic dipole moment in itself
= Current, 100 A
= Area, πr² (r = diameter divided by 2). Converting to m², we have 0.000001 m²
On solving, we have
= ,
= 100 * 3.14 * 0.000001
= 0.000314 Am²
B
=
(0)/4
* 2
/
³, where
(0) = constant of permeability = 1.256*10^-6
z = 4.7 cm = 0.047 m
B = 1.256*10^-6 / 4*3.142 * [2 * 0.000314/0.047³]
B = 1*10^-7 * 0.000628/1.038*10^-4
B = 1*10^-7 * 6.049
B = 6.049*10^-7 T
In order for two vectors to add to zero, they must have the same magnitude and point in opposite directions.
Two perpendicular vectors, by definition, make a right angle with each other whereas two vectors pointing in opposite directions form a straight line.
Because of this, two perpendicular vectors with nonzero magnitudes will never add to zero.