Answer:
The width of the strand of hair is 1.96 10⁻⁵ m
Explanation:
For this diffraction problem they tell us that it is equivalent to the diffraction of a single slit, which is explained by the equation
<h3> a sin θ =± m λ
</h3><h3 />
Where the different temrs are: “a” the width of the hair, λ the wavelength, θ the angle from the center, m the order of diffraction, which is the number of bright rings (constructive diffraction)
We can see that the diffraction angle is missing, but we can find it by trigonometry, where L is the distance of the strand of hair to the observation screen and "y" is the perpendicular distance to the first minimum of intensity
L = 1.25 m 100 cm/1m = 125 cm
y = 5.06 cm
Tan θ = y/L
Tan θ = 5.06/125
θ = tan⁻¹ ( 0.0405)
θ = 2.32º
With this data we can continue analyzing the problem, they indicate that they measure the distance to the first dark strip, thus m = 1
a = m λ / sin θ
a = 1 633 10⁻⁹ 1.25/sin 2.3
a = 1.96 10⁻⁵ m
a = 0.0196 mm
The width of the strand of hair is 1.96 10⁻⁵ m
Answer:

Explanation:
<u>Given:</u>
- Diameter of the plates of the capacitor, D = 21 cm = 0.21 m.
- Distance of separation between the plates, d = 1.0 cm = 0.01 m.
- Minimum value of electric field that produces spark,

When the dimensions of the plate of the capacitor is comparatively much larger than the distance of separation between the plates, then, according to the Gauss' law of electrostatics, the value of the electric field strength in the region between the plates of the capacitor is given by

where,
= surface charge density of the plate of the capacitor =
.
= magnitude of the charge on each of the plate.
= surface area of each of the plate =
= electrical permittivity of free space, having value = 
For the minimum value of electric field that produces spark,

It is the maximum value of the magnitude of charge which can be added up to each of the plates of the capacitor.
Answer:
c)
Explanation:
A collision is said to be elastic when the total kinetic energy is the same after the collision. The speed of objects that are stuck together will always be less than the initial speed of the object that was in motion given that the other particle was at rest. It is because the kinetic energy of the system was due to the moving object. The objects have a greater overall mass when they are stuck. If the kinetic energy is the same and the mass increases, the velocity must decrease.
Answer:
High ceilings make a room feel large and open, but they can be difficult to cool and heat. Because hot air rises, the challenge becomes trying to keep the hot air where you want it and preventing if from being wasted where you don't.
Explanation:
:)
Answer:
374.39 J/K
Explanation:
Entropy: This can be defined as the degree of disorder or randomness of a substance.
The S.I unit of entropy is J/K
ΔS = ΔH/T ..................................... Equation 1
Where ΔS = entropy change, ΔH = Heat change, T = temperature.
ΔH = cm................................... Equation 2
Where,
c = specific latent heat of fusion of water = 333000 J/kg, m = mass of ice = 0.3071 kg.
Substitute into equation 2
ΔH = 333000×0.3071
ΔH = 102264.3 J.
Also, T = 273.15 K
Substitute into equation 1
ΔS = 102264.3/273.15
ΔS = 374.39 J/K
Thus, The change in entropy = 374.39 J/K