Answer:
- longitudinal waves only
Explanation:
The P seismic waves travel as elastic motions at the highest speeds. They are longitudinal waves that can be transmitted by both solid and liquid materials in the Earth's interior.
Answer:
v(t) = 27 units
Explanation:
The function s(t) represents the position of an object at time t moving along a line such that,

and

We need to find the average velocity of the object over the interval of time [2,6]. The velocity of the object is equal to the total distance divided by time. It is given by :


v(t) = 27 units
So, the average velocity of the object is 27 units. Hence, this is the required solution.
Answer:
The second law of a vibrating string states that for a transverse vibration in a stretched string, the frequency is directly proportional to the square root of the string's tension, when the vibrating string's mass per unit length and the vibrating length are kept constant
The law can be expressed mathematically as follows;

The second law of the vibrating string can be verified directly, however, the third law of the vibrating string states that frequency is inversely proportional to the square root of the mass per unit length cannot be directly verified due to the lack of continuous variation in both the frequency, 'f', and the mass, 'm', simultaneously
Therefore, the law is verified indirectly, by rearranging the above equation as follows;

From which it can be shown that the following relation holds with the limits of error in the experiment
m₁·l₁² = m₂·l₂² = m₃·l₃² = m₄·l₄² = m₅·l₅²
Explanation:
Answer:
Distance between the charges, r = 0.8 meters
Explanation:
Given that,
Charge 1, 
Charge 2, 
Repulsive force between charges, F = 0.66 N
Let r is the distance between charges. The formula for the electrostatic force is given by :


r = 0.8009 meters
or
r = 0.8 meters
So, the distance between the charges i 0.8 meters. Hence, this is the required solution.
There are four factors affecting resistance which are Temperature, Length of wire, Area of the cross-section of wire and nature of the material. When there is current in a conductive material, the free electrons move through the material and occasionally collide with atoms.