Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed
(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:
- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:
- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:
- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
I think it false. Sorry if i'm wrong.
Answer:
36 grams of water
Explanation:
mass of H2O = 0.5 x 18 = 9g
Answer:
In a third class lever, the effort is located between the load and the fulcrum. ... If the fulcrum is closer to the effort, then the load will move a greater distance. A pair of tweezers, swinging a baseball bat or using your arm to lift something are examples of third class levers.
Explanation: