Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)

Answer:
Safety
Explanation:
Expressways are banked to resist centifugal action
Answer:
The electric bill for June is Rs198000
Explanation:
Convert volt to watt, but in order to do so I need to know the amps and since it is not provided I converted if the amps was 1.
I multiple 50 with 10 then with 30 so I know how much watt the fan takes at June.
Since there are 2 light bulb I multiple 10 with 2 than with 8 than with 30.
15000 watts for the fan,
4800 watts for light bulb,
add them and then times it by 10.
Rs198000
The specific heat of a metal or any element or compound can be determined using the formula Cp = delta H / delta T / mass. delta pertains to change. That is change in enthalpy and change in temperature. From the given data, Cp is equal to 343 cal per (86-19) c per 55 grams. This is equal to 0.093 cal / g deg. Celsius
Let t = Theta and p = Phi
Tan t = y/x Then x =y/Tant.
Tant = y/(x-d) x-d = y/Tanp
y/Tant - d = y/Tanp
y -d*Tanr = y*Tant/Tanp
y-y*Tant/Tanp = d*Tanr
y(1 - Tanr/Tanp = d*Tant
y = d*Tant/(1-Tant/Tanp)