If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2
<span>Which group in the periodic table is known as salt formers?
The correct option is the last one: Halogen family.
</span><span>
You can find the halogen or "</span>salt formers" in the group 17 of the periodic table. These are:
- Fluorine.
-Chlorine.
- Bromine.
- Iodine.
- Astatine.
All of them are non-metallic elements and they have 7 electrons.
4.0 ilynits per second Alaskan es muy du facial in the oscillates 1.99
A "screen" or even just a set of parallel bars are highly reflective to electromagnetic waves as long as the open spaces are small compared to the wavelengths.
"Grid" dishes work fine ... with less weight and less wind resistance ... for frequencies below about 3 GHz. (Wavelengths of at least 10 cm.)
(I even worked on a microwave system in South America where huge grid dishes were used on a 90-mile link.)