I believe the correct answer would be that electronegativity generally increases moving from left to right across a period. The periodic table of elements is arranged so that trends of the properties of the elements can be shown. For electronegativity, it decreases from right to left which means for the opposite direction it increases.
Answer:
molar mass (molar weight)
Explanation:
<u>Answer:</u> The concentration of radon after the given time is 
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 3.00 days
= initial amount of the reactant = 
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.181days^{-1}=\frac{2.303}{3.00days}\log\frac{1.45\times 10^{-6}}{[A]}](https://tex.z-dn.net/?f=0.181days%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B3.00days%7D%5Clog%5Cfrac%7B1.45%5Ctimes%2010%5E%7B-6%7D%7D%7B%5BA%5D%7D)
![[A]=3.83\times 10^{-30}mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D3.83%5Ctimes%2010%5E%7B-30%7Dmol%2FL)
Hence, the concentration of radon after the given time is 
Answer:

Explanation:
Given that,
Force applied to a soccer player, F = 56.6 N
The mass of the ball, m = 0.46 kg
We need to find the acceleration of the soccer ball. The force acting on the ball is given by :
F = ma
Where
a is the acceleration

So, the required solution is
.