Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!
There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
A motion where gravity is the only force acting upon it
Answer:
The induced emf is
Explanation:
From the question we are told that
The radius of the circular loop is 
The intensity of the wave is 
The wavelength is 
Generally the intensity is mathematically represented as

Here
is the permeability of free space with value

B is the magnetic field which can be mathematically represented from the equation as

substituting values


The area is mathematically represented as

substituting values


The angular velocity is mathematically represented as

substituting values
Generally the induced emf is mathematically represented as

At maximum induced emf 
So

substituting values
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4