(0.5)×(0squared)×(3)=(1.5j)
Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
The answer is emagination emagination
1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.