This is true, depending on the color, there should be a chart where you can compare the color of the litmus paper (dipped in acid/base) to figure out how basic or acidic it is
Answer:
189.5
Explanation:
its very very very very easy
Answer:
O: 3.41 / 3.41 = 1.00.
Explanation:
To find the simplest whole number ratio, divide each number by the smallest number of moles
Answer:
0 M is the silver ion concentration in a solution prepared mixing both the solutions.
Explanation:

Moles of silver nitrate = n
Volume of the solution = 425 mL = 0.425 L (1 mL = 0.001 L)
Molarity of the silver nitrate solution = 0.397 M

Moles of sodium phosphate = n'
Volume of the sodium phosphate solution = 427 mL = 0.427 L (1 mL = 0.001 L)
Molarity of the sodium phosphate solution = 0.459 M


According to reaction, 3 moles of silver nitrate reacts with 1 mole of sodium phosphate, then 0.1687 moles of silver nitrate will recat with :
of sodium phosphate
This means that only 0.05623 moles of sodium phosphate will react with all the 0.1687 moles of silver nitrate , making silver nitrate limiting reagent and sodium phosphate as an excessive reagent.
So, zero moles of silver nitrate will be left in the solution after mixing of the both solutions and hence zero moles of silver ions will left in the resulting solution.
0 M is the silver ion concentration in a solution prepared mixing both the solutions.
Answer is: boiling point will be changed by 4°C.
Chemical dissociation of aluminium nitrate in water: Al(NO₃)₃ → Al³⁺(aq) + 3NO⁻(aq).
Change in boiling point: ΔT =i · Kb · b.
Kb - molal boiling point elevation constant of water is 0.512°C/m, this the same for both solution.
b - molality, moles of solute per kilogram of solvent., this is also same for both solution, because ther is same amount of substance.
i - Van't Hoff factor.
Van't Hoff factor for sugar solution is 1, because sugar do not dissociate on ions.
Van't Hoff factor for aluminium nitrate solution is approximately 4, because it dissociates on four ions (one aluminium cation and three nitrate anions). So ΔT is four times bigger.