Answer:
the wavelength, in nm, of the photon is 487.5 nm
Explanation:
Given:
n = 4 (excited)
n = 2 (relaxes)
Question: Calculate the wavelength, in nm, λ = ?
First, it is important to calculate the energy of the electron when it excited and then when it relaxes.
(excited)
(relaxes)
The change of energy
ΔE = E₁ - E₂=-0.85 - (-3.4) = 2.55 eV = 4.08x10⁻¹⁹J
For a photon, the wavelength emitted

Here
h = Planck's constant = 6.63x10⁻³⁴J s
c = speed of light = 3x10⁸m/s
Substituting values:

Explanation:

1)Mass of CO when 210.3 g of Fe produced.
Number of moles of
in 210.3 g=


According to reaction, 2 moles of Fe are obtained from 3 moles of CO, then 3.76 moles of Fe will be obtained from :
of CO that is 5.64 moles.
Mass of CO in 5.64 moles =

2)Mass of CO when 209.7 g of Fe produced.
Number of moles of
in 209.7 g=


According to reaction, 2 moles of Fe are obtained from 3 moles of CO, then 3.75 moles of Fe will be obtained from :
of CO that is 5.625 moles.
Mass of CO in 5.625 moles =

Answer:
Question 1
C) polarizability
Question 2
C) London dispersion forces
Question 3:
D)Kr
Question 4:
E) strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other
Answer : The value of new volume is, 50.0 mL
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure at STP = 1 atm
= final pressure = 4.00 atm
= initial volume at STP = 200.0 mL
= final volume = ?
Now put all the given values in the above equation, we get:


Therefore, the value of new volume is, 50.0 mL
Answer:
The reaction begins and builds up heat. This heat causes the aluminum to melt and float on top of the liquid bromine. Wherever the two elements meet, sparks, heat, and light are given off.
Explanation: