<span>136.14 g/mol </span><span><span>Calcium sulfate, Molar mass</span></span>
Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.
<span>The force of a system can be measured by formula P=mf where P is the force, m is the mass of the system and f is the acceleration of the system. The formula is known as Newton's second law of motion.</span>
The formula for kinetic energy is KE=1/2(mv²). Since both mass and velocity are multiplied by each other, particle with a larger mass needs to be moving slower than a particle with less mass if both have the same kinetic energy. You can think of it as 2KE/m=v² or 2KE/v²=m, If you increase the mass the velocity needs to decrease to keep the same KE value.
I hope this helps. Let me know in the comments if anything is unclear.