Answer:
Explanation:
Electron's kinetic energy = 2 eV
= 2 x 1.6 x 10⁻¹⁹ J
1/2 m v² = 3.2 x 10⁻¹⁹
1/2 x 9.1 x 10⁻³¹ x v² = 3.2 x 10⁻¹⁹
v² = .703 x 10¹²
v = .8385 x 10⁶ m/s
Electrons revolve in a circular orbit when forced to travel in a magnetic field whose radius can be expressed as follows
r = mv / Bq
where m , v and q are mass , velocity and charge of electron .
here given magnetic field B = 90 mT
= 90 x 10⁻³ T
Putting these values in the expression above
r = mv / Bq
= 
= .052 mm.
Answer:
d = 0.076 mm
Explanation:
Given data
diffraction pattern d1 = 0.19 mm = 0.019 cm
separated s(1) = 1.8 cm
separated s(2) = 4.5 cm
to find out
d2 for an unknown
solution
we know here that spacing in between the diffraction fringe is always inversely proportional to diffraction grating so
we will apply here formula for unknown d that is
d1 (s1 / L) = d2 (s2 /L)
d2 = d1 × s(1) / s(2)
put here all thes evalue we get d2
d2 = d1 × s(1) / s(2)
d2 = 0.019 × 1.8 / 4.5
d2 = 0.0076 cm
d2 = 0.076 mm
Answer:
Explanation:
Since the surface is frictionless therefore there will be no friction force on block but there will be weight of block which we can divide in to two components i.e. mgcosθ &mgsinθ which is perpendicular and parallel to the surface respectively.
In response to mgcosθ ramp will apply a normal force to the block which will be of equal magnitude to that of mgcosθ.
Therefore Ramp will apply a Force of mgcosθ on block where m is the mass of block.
Answer:
The apple
Explanation:
The apple has gravitational potential energy because it is just sitting there but nothing is pushing it up, it is not sitting on something. This means that it has a lot of gravitational potential energy as nothing is pushing it up.
Answer: 6s
Explanation:
Vs=32m/s speed at beginning of slowing down
Vf=0m/s stop speed
a= -6 m/s² acceleration
----------------
Use equation for acceleration :
a=(Vf-Vs)/t
a*t=Vf-Vs
t=(Vf-Vs)/a
t=(0-36)/-6
t=-36/-6
t=6 s