Answer:
The pH of the solution is 4.60.
Explanation:
The pH gives us an idea of the acidity or basicity of a solution. More precisely, it indicates the concentration of H30 + ions present in said solution. The pH scale ranges from 0 to 14: from 0 to 7 corresponds to acid solutions, 7 neutral solutions and between 7 and 14 basic solutions. It is calculated as:
pH = -log (H30 +)
pH= -log (2,5 x 10-5)
<em>pH=4.60</em>
Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

Answer:
Explanation:
During titration indicators are often used to identify chemical changes between reacting species.
For colorless solutions in which no noticeable changes can easily be seen, indicators are the best bet. Most titration processes involves a combination of acids and bases to an end point.
Indicators are substances whose color changes to signal the end of an acid-base reaction. Examples are methyl orange, methyl red, phenolphthalein, litmus, cresol red, cresol green, alizarin R3, bromothymol blue and congo red.
Most of these indicators have various colors when chemical changes occur.
Also, there are heat changes that accompanies most of these reactions. These are also indicators of chemical changes.
D.mno4- is reuced it loses h atom