The molarity of the acid sample H₂SO₄ is 0.052M .
<h3>What is Molarity ?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution.
Molarity is defined as the moles of a solute per liters of a solution.
Molarity is also known as the molar concentration of a solution
Now to determine the molarity of the acid sample
V( H₂SO₄) = 24.0 mL in liters = 24.0 / 1000 = 0.024 L
M(H₂SO₄) = ?
V(NaOH) = 20.0 mL = 20.0 / 1000 = 0.02 L
M(NaOH) = 0.125 M
Number of moles NaOH :
n = M x V
n = 0.125 x 0.02
n = 0.0025 moles of NaOH
H₂SO₄(aq) + 2 NaOH(aq) = Na₂SO₄(aq) + 2 H₂O(l)
1 mole H₂SO₄ ---------- 2 mole NaOH
? mole H₂SO₄ ---------- 0.0025 moles NaOH
moles = 0.0025 * 1 / 2
= 0.00125 moles of H₂SO₄
M(H₂SO₄) = n / V
M = 0.00125 / 0.024
= 0.052 M
Therefore the molarity of the acid sample H₂SO₄ is 0.052M .
To know more about molarity
brainly.com/question/12127540
#SPJ4
Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :

where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant

Now put all the given values in this formula, we get

t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Box C will have the greatest density.
All boxes have the same volume.
Explanation:
We calculate the density using the following formula:
density = mass / volume
density of Box A = 10 g / 20 cm³ = 0.5 g/cm³
density of Box B = 30 g / 20 cm³ = 1.5 g/cm³
density of Box C = 170 g / 20 cm³ = 8.5 g/cm³
Box C will have the greatest density.
All boxes have the same volume.
Learn more about:
density
brainly.com/question/952755
#learnwithBrainly