1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
13

Suppose Gabor, a scuba diver, is at a depth of 15m. Assume that: The air pressure in his air tract is the same as the net water

pressure at this depth. This prevents water from coming in through his nose. The temperature of the air is constant (body temperature). The air acts as an ideal gas. Salt water has an average density of around 1.03 g/cm3, which translates to an increase in pressure of 1.00 atm for every 10.0 m of depth below the surface. Therefore, for example, at 10.0 m, the net pressure is 2.00 atm. What is the ratio of the molar concentration of gases in Gabor's lungs at the depth of 15 meters to that at the surface

Physics
1 answer:
s2008m [1.1K]3 years ago
6 0

Complete Question

The complete question is shown on the first and second uploaded image

Answer:

a

Now the ratio of the gases in Gabor's lungs at the depth of 15m to that at

the surface is \frac{(n/V)_{15\ m}}{(n/V)_{surface}} = 2.5

b

The number of moles of gas that must be released is  n= 0.3538\ mols

Explanation:

We are told from the question that the pressure at the surface is 1 atm and for each depth of 10m below the surface the pressure increase by 1 atm

 This means that the pressure at the depth of the surface would be

                P_d = [\frac{15m}{10m} ] (1 atm) + 1 atm

                      = 2.5 atm

The ideal gas equation is mathematically represented as

                PV = nRT

Where P is pressure at the surface

           V is the volume

            R is the gas constant  = 8.314 J/mol. K

making n the subject we have

        n = \frac{PV}{RT}

 Considering at the surface of the water the number of moles at the surface would be

               n_s = \frac{P_sV}{RT}

Substituting 1 atm = 101325 N/m^2 for P_s ,6L = 6*10^{-3}m^3 for volume , 8.314 J/mol. K for R , (37° +273) K for T into the equation

              n_s = \frac{(1atm)(6*10^{-3} m^3)}{(8.314J/mol \cdot K)(37 +273)K}

                   = 0.2359 mol  

To obtain the number of moles at the depth of the water we use

                n_d  = \frac{P_d V}{RT}

Where P_d \ and \ n_d \ are pressure and no of moles at the depth of the water

        Substituting values we have

              n_d = \frac{(2.5)(101325 N/m^2)(6*10^{-3}m^3)}{(8.314 J/mol \cdot K)(37 + 273)K}

                  = 0.5897 mol

Now to obtain the number of moles released we have

             n =  n_d - n_s

               = 0.5897mol  - 0.2359mol

              =0.3538 \ mol

     The molar concentration at the surface  of water is

                [\frac{n}{V} ]_{surface} = \frac{0.2359mol}{6*10^-3m^3}

                                =39.31mol/m^3

    The molar concentration at the depth  of water is

           [\frac{n}{V} ]_{15m} = \frac{0.5897}{6*10^{-3}}

                      = 98.28 mol/m^3

Now the ratio of the gases in Gabor's lungs at the depth of 15m to that at the surface is

         \frac{(n/V)_{15\ m}}{(n/V)_{surface}} = \frac{98.28}{39.31} =2.5

                   

                     

                     

You might be interested in
If an object has a mass of 10 kilograms, how much does it weigh in newtons?
schepotkina [342]

10 kilograms of mass weighs 98.1 newtons on Earth,
16.2 newtons on the Moon, 37.1 newtons on Mars,
and other weights in other places.

6 0
4 years ago
Introduced species often thrive and multiply in an environment very different from their original one. Why are they often able t
Anestetic [448]
They begin to adapt into their new location. They then end up having adaptations to help them survive.
8 0
3 years ago
Seven seconds after a brilliant flash of lightning, thunder shakes the house. How far was the lightning strike from the house? S
Zepler [3.9K]

Answer:

About two kilometers away

\rm distance=2.401\ km

Explanation:

Given:

The time gap between the light and sound to travel to the house, t=7\ s

<em>Since the clouds are formed in the troposphere region of the atmosphere which extends from 8 kilometers to 12 kilometers above the earth-surface and the velocity of light is 300000 kilometers per second so it is visible almost instantly, hence we neglect the time taken by the light to travel to the house from the clouds.</em>

<u>∴Distance between the lightning-strike and the house:</u>

\rm distance=v\times t

we have the speed of sound as: v=343\ m.s^{-1}

So,

\rm distance=343\times 7

\rm distance=2401\ m

\rm distance=2.401\ km

6 0
3 years ago
SP: Calculate the moment
ipn [44]

Answer:

Moment of the force is 20 N-m.

Explanation:

Given:

Force exerted by the person is, F=80\ N

Distance of application of force from the point about which moment is needed is, d=25\ cm=\frac{25}{100}\ m=0.25\ m

Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.

Therefore, the moment of the force about the end of the claw hammer is given as:

M=F\times d\\\\M=(80\ N)(0.25\ m)\\\\M=20\textrm{ N-m}

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.

6 0
3 years ago
Like magnetism, static electricity can attract and repel.<br> True<br> False
earnstyle [38]
The answer to the question is True
5 0
3 years ago
Read 2 more answers
Other questions:
  • In order for exercise to be effective, it must substantially increase heart rate. True False
    15·2 answers
  • In my trigonometry class, we were assigned a problem on Angular and Linear Velocity.
    5·1 answer
  • A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in t
    14·1 answer
  • What is the displacement of a car with an acceleration of 4.00 m/s2 as it increases.
    11·1 answer
  • A student pushes on a crate with the force of 100 Newtons directed to the right. What force does the crate exert on the student?
    7·1 answer
  • A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
    12·1 answer
  • A 10,000 N piano is dropped from the top of a building. When the piano reaches terminal speed…
    6·1 answer
  • Stars emit different wavelengths of visible light due to their different
    14·2 answers
  • The learning about Universe is<br> called ________ ...​
    14·2 answers
  • Please someone help me with this!!! ​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!