Molar mass of sodium=23g
2 mole sodium gives 2 g H2
i.e 46g sodium gives 2g H2
so 65.4g will give=2.84g H2
now no. of molecules = 2.8/2*avogadros number
Answer:
Mass = 90.28 g
Explanation:
Given data:
Mass of Ca(OH)₂ = ?
Volume of solution= 1.5 L
Molarity of solution = 0.81 M
Solution:
First of all we will calculate number of moles.
Molarity = number of moles / volume in L
by putting values,
0.81 M = Number of moles / 1.5 L
Number of moles = 0.81 M × 1.5 L
Number of moles = 1.22 mol
Mass of Ca(OH)₂ in gram:
Mass = number of moles × molar mass
Mass = 1.22 mol × 74.09 g/mol
Mass = 90.28 g
Answer:
I think it's B
Explanation:
I think it is b because if the number is positive the zeroes will be on the left so you move the decimal to the right to get rid of the zeroes.
D. CuCl2 copper(2)chloride
Answer:
They represent it by ensuring that the number of atoms of each element (matter) in the reactant side is the same as the product side
Explanation:
The law of conservation of matter stated that matter can neither be created nor destroyed. Chemical equations involve combining atoms of elements. The compounds combined by chemists are called REACTANTS while the produced compounds are called PRODUCTS.
In order to conform to the law of conservation of matter, the same quantity of matter present in the reactants must be present in the products. This means that the number of atoms of each element (matter) in the reactant side must be the same as the product side. For example;
C6H12O6 + 6O2 → 6CO2 + 6H2O
In this chemical equation for photosynthesis, number of atoms in the reactant side (6 carbon, 12 hydrogen, 18 oxygen) are the same as that in the product side (6 carbon, 12 hydrogen, 18 oxygen), hence, this obeys the law of conservation of mass.
In a nutshell, chemists chemists properly represent the law of conservation of matter in their chemical equations by making sure that same number of atoms of reactants is present in the products.