Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
Answer:
Its A
Explanation:
The lens bulges outward in its center, like reading glasses.
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56
Answer:
1.98s
Explanation:
The time taken to hit the ground is given by
h=ut+ 1/2 at^2
but u =0
so we have
h=1/2at^2
making t the subject
t=√2h/g
√2×19.6/10
1.98s
Answer:
221754385964.9123
Explanation:
Convert miles to nanometer
1 mile = 1.6 km
1 km = 1×10³×10³×10³×10³ nm
1 mile = 1.6×10¹² nm
So,
158 miles = 158×1.6×10¹² = 252.8×10¹² nm
Length of each molecule = 1140 nm
Number of molecules = Total length / Length of each molecule

There are 221754385964.9123 number of molecules in a stretch of 158 miles