Velocity is said to be constant if its magnitude as well direction at any instant is remains the same. In D, if you draw a line parallel to y-axis at any time t, you can see that velocity is same. Hence, D is the correct graph.
The kinetic energy of gaseous molecules is greater than that of liquid molecules. Therefore, in gas, kinetic energy overcomes the force of attraction between molecules. In short, in gas phase, particles move at high speed and hence they have less force of attraction. In case of liquid phase, particles are close enough as a result there is much more force of attraction compared to gaseous molecules. In liquid state, kinetic energy cannot overcome force of attraction therefore, liquid molecules slow down.
Therefore, B is the correct answer.
Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 0.4 m/s²
Initial Speed =
= 20 m/s
Final Speed =
= 40 m/s
<h3><u>Required:</u></h3>
Time = t = ?
<h3><u>Formula:</u></h3>

<h3><u>Solution:</u></h3>
Rearranging formula for t
![\displaystyle t =\frac{V_f-V_i}{a} \\\\t = \frac{40-20}{0.4} \\\\t = \frac{20}{0.4} \\\\\boxed{t = 50 \ seconds}\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20t%20%3D%5Cfrac%7BV_f-V_i%7D%7Ba%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B40-20%7D%7B0.4%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B20%7D%7B0.4%7D%20%5C%5C%5C%5C%5Cboxed%7Bt%20%3D%2050%20%5C%20seconds%7D%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Bowling Ball
Explanation:
The bowling ball has the highest gravitational potential energy because the height at which it will fall is the highest of the rest objects on the table.