Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
Answer:
sulphuric is a strong acid
Explanation:
Sulphuric is a strong acid because it completely ionises in water while acetic acid partially ionises in water
No, because hydrogen isn’t brought out of the equation
Answer:
5
Explanation:
To balance the hydrogen atoms, we check the number of hydrogen on the left side, this is equal to the 10 hydrogen atoms we have in the alkanol.
Now, on the right hand side, we can see we only have two hydrogen atoms in the water molecule. Now, to make equal the number of hydrogen atoms on both sides, we simply multiply the number of hydrogen there by 5 to make it 10 too
<span>The correct answer is that an ionic bond forms between charged particles. To form this bond, the particles transfer valence electrons (those in the outermost orbit). Specifically, in ionic bonding, the metal atom loses its electrons (thus becoming positive) and the nonmetal atom gains electrons (thus becoming negative).</span>