Answer:

Explanation:
Hello!
In this case, since the density in the international system of units is given in terms of kg for the mass and L for the volume, we need to perform a process of units conversions from mg and dL to kg and L as show below:

Best regards!
Answer:
Molar mass of vitamin K = 450.56\frac{g}{mol}[/tex]
Explanation:
The freezing point of camphor = 178.4 ⁰C
the Kf of camphor = 37.7°C/m
where : m = molality
the relation between freezing point depression and molality is
Depression in freezing point = Kf X molality
Where
Kf = cryoscopic constant of camphor
molality = moles of solute dissolved per kg of solvent.
putting values
2.69°C = 37.7°C/m X molality
molality = 0.0714 mol /kg

moles of vitamin K = 0.0714X0.025 = 0.00178 mol
we know that moles are related to mass and molar mass of a substance as:

For vitamin K the mass is given = 0.802 grams
therefore molar mass = 
<span> red litmus paper turns </span>blue <span>under basic or alkaline conditions, with the color change occurring over the pH range 4.5–8.3 at 25 °C (77 °F). Neutral litmus paper is purple.</span>
It is A) 1,482 cm3 ..............