Answer:
Amount of fuel used per year is supposed to be 34150 KJ/kg
Answer:
7,217*10^28 atoms/m^3
Explanation:
- Metal: Vanadium
- Density: 6.1 g/cm^3
- Molecuar weight: 50,9 g/mol
The Avogadro's Number, 6,022*10^23, is the number of atoms in one mole of any substance. To calculate the number of atoms in one cubic meter of vanadium we write:
1m^3*(100^3 cm^3/1 m^3)*(6,1 g/1 cm^3)*(1 mol/50,9g)*(6,022*10^23 atoms/1 mol)=7,217*10^28 atoms
Therefore, for vanadium we have 7,217*10^28 atoms/m^3
Answer:
203.0160
Explanation:
Because you add then subtract then multiply buy 7 the subtract then divide then you add that to the other numbers you got than boom
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
s= 20.4 m
Explanation:
First lets write down equations for each ball:
s=so+vo*t+1/2a_c*t^2
for ball A:
s_a=30+5*t+1/2*9.81*t^2
for ball B:
s_b=20*t-1/2*9.81*t^2
to find time deeded to pass we just put that
s_a = s_b
30+5*t-4.91*t^2=20*t-4.9*t^2
t=2 s
now we just have to put that time in any of those equations an get distance from the ground:
s = 30 + 5*2 -1/2*9.81 *2^2
s= 20.4 m