Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
PH (potential of hydrogen) is a numeric scale that is used to show the acidity or basicity of an aqueous solution. It tells how acidic or alkaline a substance is . The pH values ranges from 0 to 14, such that acidic solutions have values between 1 to 6.9 with most acidic having a pH value of 1 and those that are basic have values from 7.1 to 14, with most acidic having a value of 14. Acidic compounds contain replaceable hydrogen ions while basic compounds contain hrdroxyl ions. In this case, a coke has a pH of 3.5 (acidic) which means that it has an excess of hydrogen ions (H+) and would be called an acid.
Iron should be in the 3d block
Seismic waves hope this helps.