1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ludmilkaskok [199]
3 years ago
14

(Specific weight) A 1-ft-diameter cylindrical tank that is 5 ft long weighs 125 lb and is filled with a liquid having a specific

weight of 66.4 lb/ft3. Determine the vertical force required to give the tank an upward acceleration of 10.7 ft/s2.
Engineering
1 answer:
lina2011 [118]3 years ago
5 0

Answer:

The answer to the question is 514.17 lbf

Explanation:

Volume of cylindrical tank = πr²h = 3.92699 ft³

Weight of tank = 125 lb

Specific weight of content = 66.4 lb/ft³

Mass of content =  66.4×3.92699 = 260.752 lb

Total mass = 260.752 + 125 = 385.75 lb = 174.97 kg

=Weight = mass * acceleration = 174.97 *9.81 = 1716.497 N

To have an acceleration of 10.7 ft/s² = 3.261 m/s²

we have F = m*a = 174.97*(9.81+3.261) = 2287.15 N = 514.17 lbf

You might be interested in
A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s (pressure, temperature and velocity). It discharges liquid-v
adelina 88 [10]

Answer:

The power produced by the turbine is 23309.1856 kW

Explanation:

h₁ = 3755.39

s₁ = 7.0955

s₂ = sf + x₂sfg  =

Interpolating fot the pressure at 3.25 bar gives;

570.935 +(3.25 - 3.2)/(3.3 - 3.2)*(575.500 - 570.935) = 573.2175

2156.92 +(3.25 - 3.2)/(3.3 - 3.2)*(2153.77- 2156.92) = 2155.345

h₂ = 573.2175 + 0.94*2155.345 = 2599.2418 kJ/kg

Power output of the turbine formula =

Q - \dot{W } = \dot{m}\left [ \left (h_{2}-h_{1}  \right )+\dfrac{v_{2}^{2}- v_{1}^{2}}{2} + g(z_{2}-z_{1})\right ]

Which gives;

560 - \dot{W } = 8\left [ \left (2599.2418-3755.39  \right )+\dfrac{15^{2}- 60^{2}}{2} \right ]

= -8*((2599.2418 - 3755.39)+(15^2 - 60^2)/2 ) = -22749.1856

- \dot{W } = -22749.1856 - 560 = -23309.1856 kJ

\dot{W } = 23309.1856 kJ

Power produced by the turbine = Work done per second = 23309.1856 kW.

5 0
3 years ago
A motor car shaft consists of a steel tube 30 mm internal diameter and 4 mm thick. The engine develops 10 kW at 2000 r.p.m. Find
tresset_1 [31]

The maximum shear stress in the tube when the power is transmitted through a 4: 1 gearing is 28.98 MPa.

<h3>What is power?</h3>

Power is the energy transferred per unit time.

Torque is find out by

P = 2πNT/60

10000 = 2π x 2000 x T / 60

T =47.74 N.m

The gear ratio Ne / Ns =4/1

Ns =2000/4 = 500

Ts =Ps x 60/(2π x 500)

Ts =190.96 N.m

Maximum shear stress τ = 16/π x (T / (d₀⁴ - d₁⁴))

τ max =T/J x D/2
where d₁ = 30mm = 0.03 m

           d₀ = 30 +(2x 4) = 38mm =0.038 m

Substitute the values into the equation, we get

τ max = 16 x 190.96 x 0.038 /π x (0.038⁴ - 0.03⁴)

τ max = 28.98 MPa.

Thus, the maximum shear stress in the tube is 28.98 MPa.

Learn more about power.

brainly.com/question/13385520

#SPJ1

7 0
2 years ago
The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-k
sammy [17]

Answer:

s_max = 0.8394m

Explanation:

From equilibrium of block, N = W = mg

Frictional force = μ_k•N = μ_k•mg

Since μ_k = 0.3,then F = 0.3mg

To determine the velocity of Block A just before collision, let's apply the principle of work and energy;

T1 + ΣU_1-2 = T2

So, (1/2)m_a•(v_ao)² - F•s =(1/2)m_a•(v_a1)²

Plugging in the relevant values to get ;

(1/2)•(15)•(10)² - (0.3•15•9.81•4) =(1/2)(15)•(v_a1)²

750 - 176.58 = 7.5(v_a1)²

v_a1 = 8.744 m/s

Using law of conservation of momentum;

Σ(m1v1) = Σ(m2v2)

Thus,

m_a•v_a1 + m_b•v_b1 = m_a•v_a2 + m_b•v_b2

Thus;

15(8.744) + 10(0) = 15(v_a2) + 10(v_b2)

Divide through by 5;

3(8.744) + 2(0) = 3(v_a2) + 2(v_b2)

Thus,

3(v_a2) + 2(v_b2) = 26.232 - - - (eq1)

Coefficient of restitution has a formula;

e = (v_b2 - v_a2)/(v_a1 - v_b1)

From the question, e = 0.6.

Thus;

0.6 = (v_b2 - v_a2)/(8.744 - 0)

0.6 x 8.744 = (v_b2 - v_a2)

(v_b2 - v_a2) = 5.246 - - - (eq2)

Solving eq(1) and 2 simultaneously, we have;

v_b2 = 8.394 m/s

v_a2 = 3.148 m/s

Now, to find maximum compression, let's apply conservation of energy on block B;

T1 + V1 = T2 + V2

Thus,

(1/2)m_b•(v_b2)² + (1/2)k(s_1)² = (1/2)m_b•(v_b'2)² + (1/2)k(s_max)²

(1/2)10•(8.394)² + (1/2)1000(0)² = (1/2)10•(0)² + (1/2)(1000)(s_max)²

500(s_max)² = 352.29618

(s_max)² = 352.29618/500

(s_max)² = 0.7046

s_max = 0.8394m

8 0
3 years ago
A good rule of thumb in hazardous conditions is to _____.
Aloiza [94]

Answer:

C. Have your hazard lights on

Explanation:

Speeding up will cause an accident

Counter steering is not easy to do

Slowing down my result in you being rear ended

5 0
3 years ago
Read 2 more answers
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
Other questions:
  • Define a public static method named s2f that takes two String arguments, the name of a file and some text. The method creates th
    5·1 answer
  • Question 5 (20 pts) The rated current of a three-phase transmission line is 300 A. The currents flowing by the line are measured
    6·1 answer
  • Convection is a function of temperature to the fourth power. a)-True b)-False
    9·1 answer
  • Explain why the scenario below fails to illustrate an understanding of the importance of metrology. Situation: Natalie is a cali
    6·1 answer
  • Most technician jobs in the field of metrology require a college degree. True or False?
    5·2 answers
  • Steam enters a heavily insulated throttling valve at 11 MPa, 600°C and exits at 5.5 MPa. Determine the final temperature of the
    14·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
  • 10.16.1: LAB: Interstate highway numbers (Python)
    9·1 answer
  • A global resources company uses data-intensive, cloud-based simulation software, but users in remote locations find that the res
    6·1 answer
  • The three construction crafts that require a MINIMUM of a 4-year college degree are
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!