Condensation is the opposite of boiling
Ca₁₀(PO₄)₆(OH)₂ or Ca(OH)₂·3Ca₃(PO₄)₂
PO₄³⁻ phosphate ion
OH⁻ oxyhydroxide ion
Ca²⁺ calcium ion
10*(+2) + 6*(-3) + 2*(-1) = 0
10Ca²⁺ 6PO₄³⁻ 2OH⁻
Hello there!
The answer is 92000 tons per year
The palmetto landfill supplies methane (CH₄) for the BMW plant there. The gas is used to operate the turbines used to power the BMW campus. It reduces carbon dioxide emissions because the combustion of methane produces fewer CO₂ than the combustion of other gases like propane or butane, which are commonly used for powering turbines.
Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!