Answer:
t = 6179.1 s = 102.9 min = 1.7 h
Explanation:
The energy provided by the resistance heater must be equal to the energy required to boil the water:
E = ΔQ
ηPt = mH
where.
η = efficiency = 84.5 % = 0.845
P = Power = 2.61 KW = 2610 W
t = time = ?
m = mass of water = 6.03 kg
H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Therefore,
(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>
Answer:
Z = 3 + 0.23t
The water level is rising
Explanation:
Please see attachment for the equation
Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm
The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec
<h3>How to find the displacement?</h3>
We are given the velocity equation as;
s' = 40 - 3t²
Thus, the speed equation will be gotten by integration of the velocity equation to get;
s = ∫40 - 3t²
s = 40t - ¹/₂t³
Thus, the displacement between times of t = 2 sec and t = 4 sec is;
∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]
∆S = 210 m
Read more about Displacement at; brainly.com/question/4931057
#SPJ1