Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
Math and Computer Skills. A qualified engineer should be good at math, at least through the level of calculus and trigonometry, and understand the importance of following the data when making design decisions.
Organization and Attention to Detail.
Curiosity.
Creativity.
Critical Thinking.
Intuition.
Explanation:
Answer:
The right solution is "2625 kN".
Explanation:
According to the question,
The average pressure will be:
= 
By putting values, we get
= 
= 
= 
hence,
The average force will be:
= 
= 
= 
Or,
= 