1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
11

How do you add this vector graphically

Physics
1 answer:
arlik [135]3 years ago
8 0

(-3,3)+(2,3)=(1,6)

this is the answer :)

You might be interested in
According to a rule-of-thumb. every five seconds between a lightning flash and the following thunder gives the distance to the f
Bond [772]

Answer:

S_{s}=300 m/s

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

Explanation:

In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

\frac{1mi}{5s}*\frac{5280ft}{1mi}*\frac{0.3048m}{1ft}=321.87m/s

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.

The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.

For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

\frac{5s}{1mi}*\frac{1mi}{5280ft}*\frac{1ft}{0.3048m}*\frac{1000m}{1km}=3.11s/km

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

3 0
3 years ago
A cart of mass m = 0.12 kg moves with a speed v = 0.45 m/s on a frictionless air track and collides with an identical cart that
lina2011 [118]

Answer:

0.006075Joules

Explanation:

The final kinetic energy of the system is expressed as;

KE = 1/2(m1+m2)v²

m1 and m2 are the masses of the two bodies

v is the final velocity of the bodies after collision

get the final velocity using the law of conservation of momentum

m1u1 + m2u2 = (m1+m2)v

0.12(0.45) + 0/12(0) = (0.12+0.12)v

0.054 = 0.24v

v = 0.054/0.24

v = 0.225m/s

Get the final kinetic energy;

KE = 1/2(m1+m2)v

KE = 1/2(0.12+0.12)(0.225)²

KE = 1/2(0.24)(0.050625)

KE = 0.12*0.050625

KE = 0.006075Joules

Hence the final kinetic energy of the system is 0.006075Joules

5 0
3 years ago
How much time would it take for the sound of thunder to travel 1500 meters if sound travels at a speed of 330 m/s
Elis [28]

Data given:

Δx=1500m

v=330m/s

t=?

Formula:

V=Δx/t

Solution:

t=1500m/330m/s

t=4.5s

7 0
3 years ago
How long does it take (in minutes) for light to reach venus from the sun, a distance of 1.152 × 108 km?
7nadin3 [17]
Using the precise speed of light in a vacuum (299,792,458 \ \frac{m}{s}), and your given distance of 1.152 * 10^{8} km, we can convert and cancel units to find the answer. The distance in m, using \frac{1000 \ m}{1 \ km}, is 1.152 * 10^{11} m. Next, for the speed of light, we convert from s to min, using \frac{1 \ min}{60 \ s}, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is 6.405 min.

7 0
3 years ago
Tara prepared a report to show how the amplitude of waves affects the energy of waves. Is her graphical representation correct?
Gelneren [198K]

Answer:

It is not correct because the amplitude of the waves can be bigger than others and the graph can be going up and down

Explanation: I got the question right

6 0
3 years ago
Read 2 more answers
Other questions:
  • What should you do when a crate is too heavy to be lifted by the pulley?
    13·1 answer
  • Does a brick have thermal energy? Also does paper haven't thermal energy?
    5·1 answer
  • Two objects of mass m move in opposite directions toward each other. The green object moves at velocity v, and the blue object m
    12·2 answers
  • A spindle connects two wheels with fixed axles by a fan belt. If the effort wheel is larger than the resistance wheel, which axl
    14·1 answer
  • When one object pushes or pulls another object the first object is
    8·1 answer
  • Which of the following is a high impact activity?<br> walking<br> sprinting<br> swimming<br> sit-ups
    7·2 answers
  • Flow of electrical current in a wire is analogous to the flow of water in a pipe. True False
    8·2 answers
  • How will our sun change as it ages? A. It will become a white dwarf and then collapse into a neutron star. B. It will become a r
    7·1 answer
  • Identify the amplitude in the wave image below.*<br> F. G H J
    10·1 answer
  • You want to determine whether the mass of an object attached to a parachute affects the time it takes to fall to the ground. In
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!