A glass pipe system has a very corrosive liquid flowing in it (think hydrofluoric acid, say). The liquid will destroy flow meters, but you need to know the flow rate. One way of measuring the flow rate is to add a fluorescent dye to the liquid at a known concentration, and then downstream activate the dye by UV light and then measure the dye concentration by emitted light. If the dye is added at 1.00 g/s, and the dye concentration downstream is 0.050% by mass, what is the unknown flow rate in kg/h
glass
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

F = ma
a = f/m
if f doubled , acc. will be doubled
Answer:
Explanation:
The quantity of energy transferred by a force when it is applied to a body and causes that body to move in the direction of the force work.