Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Explanation:
It is given that,
Speed of the jet airplane with respect to air,
If the wind at the airliner’s cruise altitude is blowing at 100 km/h from west to east, 
(A) Let
is the speed of the airliner relative to the ground if the airplane is flying from west to east,

(B) Let
is the speed of the airliner relative to the ground if the airplane is flying from east to west,

Hence, this is the required solution.