1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
14

A leaky 10-kg bucket is lifted from the ground to a height of 11 m at a constant speed with a rope that weighs 0.9 kg/m. Initial

ly the bucket contains 33 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 11-m level. Find the work done. (Use 9.8 m/s2 for g.) Show how to approximate the required work by a Riemann sum. (Let x be the height in meters above the ground. Enter xi* as xi.)
Physics
1 answer:
nalin [4]3 years ago
8 0

Answer:

the work done to lift the bucket = 3491 Joules

Explanation:

Given:

Mass of bucket = 10kg

distance the bucket is lifted = height = 11m

Weight of rope= 0.9kg/m

g= 9.8m/s²

initial mass of water = 33kg

x = height in meters above the ground

Let W = work

Using riemann sum:

the work done to lift the bucket =∑(W done by bucket, W done by rope and W done by water)

= \int\limits^a_b {(Mass of Bucket + Mass of Rope + Mass of water)*g*d} \, dx

Work done in lifting the bucket (W) = force × distance

Force (F) = mass × acceleration due to gravity

Force = 9.8 * 10 = 98N

W done by bucket = 98×11 = 1078 Joules

Work done to lift the rope:

At Height of x meters (0≤x≤11)

Mass of rope = weight of rope × change in distance

= 0.8kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*0.8(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 7.84 (11x-x²/2)upper limit 11 to lower limit 0

W done = 7.84 [(11×11-(11²/2)) - (11×0-(0²/2))]

=7.84(60.5 -0) = 474.32 Joules

Work done in lifting the water

At Height of x meters (0≤x≤11)

Rate of water leakage = 36kg ÷ 11m = \frac{36}{11}kg/m

Mass of rope = weight of rope × change in distance

= \frac{36}{11}kg/m × (11-x)m =  3.27kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*3.27(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 32.046 (11x-x²/2)upper limit 11 to lower limit 0

W done = 32.046 [(11×11-(11²/2)) - (11×0-(0²/2))]

= 32.046(60.5 -0) = 1938.783 Joules

the work done to lift the bucket =W done by bucket+ W done by rope +W done by water)

the work done to lift the bucket = 1078 +474.32+1938.783 = 3491.103

the work done to lift the bucket = 3491 Joules

You might be interested in
P-weight blocks D and E are connected by the rope which passes through pulley B and are supported by the isorectangular prism ar
creativ13 [48]

Answer:

21.8°

Explanation:

Let's call θ the angle between BC and the horizontal.

Draw a free body diagram for each block.

There are 4 forces acting on block D:

Weight force P pulling down,

Normal force N₁ pushing perpendicular to AB,

Friction force N₁μ pushing parallel up AB,

and tension force T pushing parallel up AB.

There are 4 forces acting on block E:

Weight force P pulling down,

Normal force N₂ pushing perpendicular to BC,

Friction force N₂μ pushing parallel to BC,

and tension force T pulling parallel to BC.

Sum of forces on D in the perpendicular direction:

∑F = ma

N₁ − P sin θ = 0

N₁ = P sin θ

Sum of forces on D in the parallel direction:

∑F = ma

T + N₁μ − P cos θ = 0

T = P cos θ − N₁μ

T = P cos θ − P sin θ μ

T = P (cos θ − sin θ μ)

Sum of forces on E in the perpendicular direction:

∑F = ma

N₂ − P cos θ = 0

N₂ = P cos θ

Sum of forces on E in the parallel direction:

∑F = ma

N₂μ + P sin θ − T = 0

T = N₂μ + P sin θ

T = P cos θ μ + P sin θ

T = P (cos θ μ + sin θ)

Set equal:

P (cos θ − sin θ μ) = P (cos θ μ + sin θ)

cos θ − sin θ μ = cos θ μ + sin θ

1 − tan θ μ = μ + tan θ

1 − μ = tan θ μ + tan θ

1 − μ = tan θ (μ + 1)

tan θ = (1 − μ) / (1 + μ)

Plug in values:

tan θ = (1 − 0.4) / (1 + 0.4)

θ = 23.2°

∠BCA = 45°, so the angle of AC relative to the horizontal is 45° − 23.2° = 21.8°.

3 0
3 years ago
A measure of how far an object has moved from a starting point
Anvisha [2.4K]
Volume??? velocity??????
5 0
4 years ago
An alternating source drives a series RLC circuit with an emf amplitude of 6.04 V, at a phase angle of +30.3°. When the potentia
Vinvika [58]

Answer:

-8.56V

Explanation:

Our values are given by,

e = 6.04 V

Φ = 30.3

VC = 5.32

We can calculate the voltage across the circuit with the emf formula, that is,

e(t) = e* sin(wt)

e(t) = 6.04 * sin(Φ + π)

e(t) = 6.04 * sin(32.5 + 180)

e(t) = -3.245 V

Now, Using Kirchoff Voltage Law,

e(t) - VR- VL - VC = 0

-3.24 - 0 - VL - 5.32 = 0

Finally we have the potential difference across the inductor.

VL = - 8.56 v

5 0
3 years ago
Which of the following is a chemical change?
e-lub [12.9K]
A screw driver rusting when left in a pail of water is a chemical reaction
4 0
3 years ago
Read 2 more answers
Two water jets are emerging from a vessel at a height of 50 centimeters and 100 centimeters. If their horizontal velocities at t
givi [52]
For t1:

t1 = square root of 2h1 / g = square root of 2 * 0.5 / 9.8 = 0.319 sec

For t2:

t2 = sqaure root of 2h2 / g = square root of 2 * 1.0 / 9.8 = 0.451 sec

Wherein:
t = time(s) for the vertical movement
h= height
g = gravity (using the standard 9.8 m/sec measurement)

d1 = 1*0.319 = 0.319 m
d2 = 0.5 * 0.451 = 0.225 m

Where:

d = hor. distance

ratio = d1:d2
= 0.319 : 0.225
=3.19 : 2.25

The answer is 3.19 : 2.25
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which sentence contains italicized words that are used as an infinitive phrase?
    10·1 answer
  • A roller coaster, traveling with an initial speed of 15 meters per second, decelerates uniformly at –7.0 m/s2 to a full stop. Ap
    6·1 answer
  • If a steel containing 1.88 wt%C is cooled relatively slowly to room temperature, what is the expected weight fraction of pearlit
    5·1 answer
  • A car speeds up from 0 m/s to 14.0 m/s in 325 s. What is the acceleration?
    14·1 answer
  • When is thermal equilibrium achieved between two objects?
    11·2 answers
  • Using the equation for the final velocity in terms of masses and initial velocity of the gliders for a perfectly inelastic colli
    5·1 answer
  • M=-2 the imagine equals what?
    5·1 answer
  • What is the potential difference when the current in a circuit is 5mA and resistance is 30 Ohms
    13·1 answer
  • HELP ASAP!! WILL TRY TO GIVE BRAINLIEST
    15·1 answer
  • Which of the zodiac constellations will be highest at midnight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!