260 joules is hopefully right.
Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
<span>The American Southwest and northeastern Africa are the two sunniest regions of the world, with the U.S. city of Yuma, Arizona, taking the crown as the sunniest place on Earth. Yuma, located where the state borders both California and Mexico, receives more than 4,000 sunlight hours per year and averages 11 sunny hours per day over the course of the year. Following closely behind Yuma is another U.S. city -- Phoenix -- which receives an average of 3,872 sunlight hours a year. The third sunniest spot on Earth is Aswan, Egypt, which has an average of 3,863 sunlight hours every year and averages 10.6 sunny hours per day.</span>
Answer:
As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.
Explanation:
As we may know, the change in state of an object is due to the change in the average kinetic energy of the particles.
This average kinetic energy is proportional to the temperature of the particles.
This is because heat is a form of energy; by adding energy to ice - heat, you "excite" the water molecules, breaking the interactions in the lattice structure and forming weaker, looser hydrogen-bonding interactions.
This causes the ice to melt. This is demonstrated in the image below.
More generally, when you remove energy - the object cools down, the particles move a lot slower. So slow, that they individually attract other molecules more than before, and this results in a physical change that also changes the state.
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation: