Answer:
The amount of base needed is the amount that would give one mole of the hydroxide ion needed to neutralise one mole of the hydroxonium ion from the acid.
Explanation:
The chemical reaction between an acid and a base to form salt and water only is called a Neutralization reaction. Chemically
H⁺ + OH⁻ = H₂0
Hence, one mole of hydroxonium ion (H⁺) will combine with one mole of hydroxide ion (OH⁻) to give salt and water only.
In a completely neutralized reaction, the resulting salt is formed when there is complete dissociation of the acid and base to give salt and water with a pH of 7.
In the given question, the stated pH of between 8-9 tells us that the salt produced in this particular neutralization reaction is basic or alkaline. This usually occurs when a strong base reacts with a weak acid, producing a higher concentration of the hydroxide ion at equilibrium.
Hence the amount of base needed is the amount that would give one mole of the hydroxide ion needed to neutralise one mole of the hydroxonium ion from the acid.
If the concentration or molarity of the acid is known, then the exact amount of base required to neutralize it can be calculated. This is usually done via titrating the acid against drop wise solution of the base. Neutralization usually occurs when there is a change in colour of the resulting solution. The pH of the resulting solution can be determined using a litmus paper.
A blue litmus paper is indicative of a basic solution while a red litmus paper is indicative of an acidic solution.
Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
c) the salt solubility decreases with temperature.
Salts usually dissolve in water at a given temperature. When water cannot dissolve anymore salt at that same temperature, it is known as a saturation point. With most substances the solubility increases with increase in temperature. Same is the case for a salt like potassium nitrate. With increase in temperature the ability of it to dissolve in water increases. And so with decrease in temperature, the solubility decreases.
The answer is Photosphere Apex.
I think your answer is A not sure tho