Electromagnet is in form of solenoid
and the magnetic field due to solenoid is given as

here
i = current in the loop
so when we increase the current in electromagnet the magnetic field of the solenoid will increase
this will increase the strength of the electromagnet
so the answer would be
<em>INCREASE</em>
Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:

where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:

And the negative sign means that the system has lost this heat.
Answer:
Le calcul du courant se fait avec deux éléments : la tension et la valeur de la résistance. Courant (A) = tension (V) / résistance (Ohm) ce qui donne la formule I = U/R.
please mark me as brainalist
Answer:
1/8 = (1/2)^3
This implies the sample has decayed for 3 half lives
3 * 5730 yrs = 17,200 years
Answer:
5235.84 kg
Explanation:
There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.
As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh,
;
