When the velocity increases, then the acceleration will be positive and when the velocity decrease then the acceleration will be negative.
During the first hour, the velocity was 70 mph and during the seconds hour the velocity was 60 mph. Hence, the velocity decrease in the seconds hour. So, the acceleration will be negative during the second hour.
Now, during the third hour the velocity increases as it is 80 mph. Hence, the acceleration will be positive during the third hour.
Answer:
21.8 m/s
Explanation:
At the top of the hill (crest), there are two forces acting on the motorcycle:
- The reaction force of the road, N (upward)
- The force of gravity, mg (downward)
Since the motorcycle is moving by circular motion, the resultant of these forces will give the centripetal force, so:
where the direction of the weight (mg) is equal to that of the centripetal force, and where
m is the mass of the cycle
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed
r = 48.6 is the radius of the hill
The cycle loses contact with the road when the reaction force becomes zero:
N = 0
Substituting into the equation, we therefore find the maximum speed that is allowed for the cycle before losing constact:
<span>Find an activity you enjoy and make it a priority in your schedule.</span>
Answer:
v = 1 m/s
Explanation:
from the principle of conservation of momentum, we have following relation
initial momentum = final momentum
where
m1 = 1.14 kg
v1 = 2.0 m/s
m2 = 1.14 kg
v2 = 0 m/s
putting all value in the above equation
v = 1 m/s
Answer:
Maybe A is the correct answer