TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:b
Explanation:
Given
mass of heavy object is 4m
mass of lighter object is m
A person pushes each block with same force F
According to Work Energy theorem Change in kinetic energy of object is equal to Work done by all the object
As launching velocity is same for both the object so heavier mass must possess greater kinetic energy . For same force heavier mass must be pushed 4 times farther than the light block .


So the correct option is b
Answer:
Assuming it starts at 72 kmph and hits a dead stop: Divide 72 by 60 for distance per minute. So, 1.2km per minute. 1.2km is 1200m and 4 seconds is one fifteenth of a minute.
Explanation:
The rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.
RMS is an acronym for root mean squared. An RMS value is more than just the "amount of AC power that causes the same heating impact as an analogous DC power" or something along those lines.
No. of loop = 795
Diameter of the coil = 10.5 cm
Radius of the coil = 5.25 cm
Magnetic Field, B = 0.45 T
Time, t = 70.0 rev/s

Where,
N = No. of loop
A = Area of the coil
B = Magnetic Field
= Voltage rms
Area of the coil = πr²
= 86.57 cm²
w = 2π/t
=( 2 × 3.141)/70.0
= 0.089

Therefore, the rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.
Learn more about rms voltage here:
brainly.com/question/13156072
#SPJ4