1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
3 years ago
8

A thin rod of length 0.83 m and mass 110 g is suspended freely from one end. It is pulled to one side and then allowed to swing

like a pendulum, passing through its lowest position with angular speed 5.71 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
Physics
2 answers:
VARVARA [1.3K]3 years ago
6 0

Explanation:

(a)  The given data is as follows.

    Length of the rod, L = 0.83 m

    Mass of the rod, m = 110 g = 0.11   (as 1 kg = 1000 g)

 At the lowest point, angular speed of the rod (\omega) = 5.71 rad/s

First, we will calculate the rotational inertia of the rod about an axis passing through its fixed end is as follows.

      I = I_{CM} + mh^{2}

        = \frac{1}{12}mL^{2} + m(\frac{L}{2})

        = \frac{1}{12} \times 0.11 \times (0.83)^{2} + 0.11 \times \frac{0.83}{2}

        = 0.00631 + 0.415

        = 0.42131 kg m^{2}

Therefore, kinetic energy of the rod at its lowest point will be calculated as follows.

             K = \frac{1}{2}I \omega^{2}

                = \frac{1}{2} \times 0.42131 kg m^{2} \times (5.71)^{2}

                = 6.86 J

Hence, kinetic energy of the rod at its lowest point is 6.86 J.

(b)   According to the conservation of total mechanical energy of the rod, we have

         K_{i} + U_{i} = K_{f} + U_{f}

           K_{i} = U_{f} - U_{i}

or,      mgh = K = 6.86 J

Therefore,      h = \frac{6.86}{mg}

                          = \frac{0.63}{0.11 \times 9.8}

                          = 0.584 m

Hence, the center of mass rises 0.584 m far above that position.

Kruka [31]3 years ago
3 0

Answer:

Explanation:

length of rod, L = 0.83 m

mass of rod, M = 110 g = 0.11 kg

angular speed, ω = 5.71 rad/s

Moment of inertia of rod about the fixed point

I = Icm + Mh²

I = 1/12 M L² + M L²/4

I = 1/12 x 0.11 x 0.83 x 0.83 + 0.11 x 0.83 x 0.83 / 4

I = 0.0063 + 0.01895 = 0.0252 kgm²

a) kinetic energy of rod is given by

K = 1/2 Iω²

K = 0.5 x 0.0252 x 5.71 x 5.71 = 0.41 Joule

(b) The kinetic energy at the bottom  is equal to the potential energy at a height of the center of mass. Let the centre of mass rises upto height h.

mgh = K

0.11 x 9.8 x h = 0.41

h = 0.381 m

h = 38.1 cm

You might be interested in
A student (m = 68 kg) falls freely from rest and strikes the ground. During the collision with the ground, he comes to rest in a
Gnesinka [82]

Answer:

5.7141 m

Explanation:

Here the potential and kinetic energy will balance each other

mgh=\frac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}

This is the initial velocity of the system and the final velocity is 0

t = Time taken = 0.04 seconds

F = Force = 18000 N

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

Equation of motion

v=u+at\\\Rightarrow a=\frac{v-u}{t}

From Newton's second law

F=ma\\\Rightarrow F=m\frac{v-u}{t}\\\Rightarrow 18000=68\frac{0-\sqrt{2gh}}{0.04}\\\Rightarrow \frac{18000}{68}\times 0.04=-\sqrt{2\times 9.81\times h}\\\Rightarrow 10.58823=-\sqrt{2\times 9.81\times h}

Squarring both sides

112.11061=2\times 9.81\times h\\\Rightarrow h=\frac{112.11061}{2\times 9.81}\\\Rightarrow h=5.7141\ m

The height from which the student fell is 5.7141 m

5 0
3 years ago
Which law is used to find the magnitude of a magnetic force?
Talja [164]

Answer:

The Flemings left hand rule is used to find the magnitude of a magnetic force

Explanation:

Fleming's left hand rule states that if the first three fingers are held mutually at right angles to one another, then the fore finger points into the direction of magnetic field the middle finger in the direction of current while the thumb points in the direction of force.

Mathematically

Magnetic Force F= BILsinθ

Where

B= magnetic field density Tesla

I= current

L= length of conductor

θ= angle of conductor with field

3 0
3 years ago
An automobile with a mass of 1450 kg is parked on a moving flatbed railcar; the flatbed is 1.50 m above the ground. The railcar
igomit [66]
<span>An automobile with a mass of 1450 kg is parked on a moving flatbed railcar; the flatbed is 1.5 m above the ground. The railcar has a mass of 38,500 kg and is moving to the right at a constant speed of 8.7 m/s on a frictionless rail...
</span>
7 0
3 years ago
Two cylindrical rods, one copper and the other iron, are identical in lengths and cross-sectional areas. They are joined, end to
Pie

Answer:

Vc = 2.41 v

Explanation:

voltage (v) = 16 v

find the voltage between the ends of the copper rods .

applying the voltage divider theorem

Vc = V x (\frac{Rc}{Rc + Ri})

where

  • Rc = resistance of copper = \frac{ρl}{a}  (l = length , a = area, ρ = resistivity of copper)
  • Ri = resistance of iron = \frac{ρ₀l}{a}  (l = length , a = area, ρ₀ = resistivity of copper)

Vc =  V x (\frac{\frac{ρl}{a}}{\frac{ρl}{a} + \frac{ρ₀l}{a}})

Vc = V x (\frac{ρ x (\frac{l}{a})}{(ρ + ρ₀) x (\frac{l}{a})})

Vc = V x (\frac{ρ}{ρ + ρ₀})

where

  • ρ = resistivity of copper = 1.72 x 10^{-8} ohm.meter
  • ρ₀ = resistivity of iron = 9.71 x 10^{-8} ohm.meter

Vc = 16 x (\frac{1.72 x 10^{-8}}{1.72 x 10^{-8} + 9.71 x 10^{-8}})

Vc = 2.41 v

5 0
3 years ago
When designing an experiment how do you choose a system to investigate
Nana76 [90]
You pick a system for which no control sample exists, so that no one can show that the alleged causal relationships you assert do not, in fact, lead to the phenomenon you claim to have observed.
4 0
3 years ago
Other questions:
  • Imagine a 10kg block moving with a velocity of 20m/s to the left.
    7·1 answer
  • A projectile is launched at an angle of 60° above the horizontal. compared to the vertical component of the initial velocity of
    5·1 answer
  • Create a list of three questions that are good science questions.
    5·1 answer
  • The chart shows data for an object moving at a constant acceleration. Which values best complete the chart? Time (s) Velocity (m
    10·2 answers
  • Alex, a rescue piot drops a survival kit while her plane is flying horizontally at an altitude of 1800.0 m with a forward veloci
    7·1 answer
  • As a river's slop increases, the power of the river to cause erosion usually ______.
    5·2 answers
  • In case 1, a force f is pushing perpendicular on an object a distance l/2 from the rotation axis. in case 2 the same force is pu
    10·1 answer
  • Please hurry Describe why electric currents can be dangerous
    11·1 answer
  • A ball is kicked at 10.4 m/s at an angle of 32 degrees to the horizontal
    14·1 answer
  • A common black ant discovers a piece of bread 85 cm east of the entrance of her nest. If the ant carries 10 bits of bread back t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!