Based on the information provided, it appears that you will need to calculate the amount of heat absorbed by the water from the peanut that was burned. We are given the following information:
specific heat capacity, c = 1.0 cal/g°C
mass of water = 76 g
Ti = 22°C
Tf = 46°C
change in temperature, ΔT = 24°C
We can use the formula q = mcΔT to measure the amount of energy absorbed by the water to increase in tempature:
q = (76 g)(1.0 cal/g°C)(24°C)
q = 1824 cal
Therefore, the water absorbed 1824 calories from the peanut that was burned.
The frequencies expressed in inverse seconds are 5 s⁻¹ and 1 s⁻¹.
<h3>
What is frequency?</h3>
Frequency is the number of complete cycles in a second made by a wave.
F = 1/T
F = n/t
<h3>When n = 5</h3>
F = 5/s = 5 s⁻¹ = 5Hz
<h3>When n = 1</h3>
F = 1/s = 1 s⁻¹ = 1Hz
Learn more about frequency here: brainly.com/question/254161
#SPJ1
Answer:
Mass = 255 g
Explanation:
Given data:
Number of moles of nitrogen = 7.5 mol
Mass of ammonia formed = ?
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
Now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
7.5 : 2/1×7.5 = 15
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 15 mol × 17 g/mol
Mass = 255 g
Answer:
C. 1.35
Explanation:
2NH3 (g) <--> N2 (g) + 3H2 (g)
Initial concentration 2.2 mol/0.95L 1.1 mol/0.95L 0
change in concentration 2x x 3x
-0.84 M +0.42M +1.26M
Equilibrium 1.4 mol/0.95L=1.47M 1.58 M 1.26 M
concentration
Change in concentration(NH3) = (2.2-1.4)mol/0.95 L = 0.84M
Equilibrium concentration (N2) = 1.1/0.95 +0.42=1.58 M
Equilibrium concentration(NH3) = 1.4/0.95 = 1.47M
K = [N2]*{H2]/[NH3] = 1.58M*1.26M/1.47M = 1.35 M