There are no choices on the list you provided that make such a statement,
and it's difficult to understand what is meant by "the following".
That statement is one way to describe the approach to 'forces of gravity'
taken by the theory of Relativity.
The echo is heard 2.80 s later, this means this is the time the sound takes to travel to the reflecting object and then back to us. So, during this time, the sound wave has covered the distance L between us and the object twice:

The speed of the sound wave is:

, and since it is moving by uniform motion, we can find the distance covered by the wave using

And we said this corresponds to twice the distance between us and the reflecting object, so:

so, the object is 480 meters away.
EC_1 + EP_1 = EC2 + EP_2
EC_2 = 0
EC_2 = EP_1 - EP_2
EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J