Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
Answer:
The value is 
Explanation:
From the question we are told that
The initial pressure is
The initial temperature is ![T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K](https://tex.z-dn.net/?f=T_1%20%3D%20%2050%20%5C%20F%20%3D%20%2850%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D%20283%20%20%5C%20%20K)
The final temperature is ![T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20%20320%20%5C%20F%20%3D%20%28320%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D433%20%20%5C%20%20K)
Generally the equation for adiabatic process is mathematically represented as

=> 
Generally for a monoatomic gas 
So
![14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }](https://tex.z-dn.net/?f=14%20%2A%20283%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D%20%3DP_2%20%2A%20433%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D)
=> 
=> 
Recall that mass is the amount of matter present in a body. That means it's a property that is consistent regardless of the body's current location, gravity's pull on the body, etc.
Let's not confuse mass with weight (which is a force computed as Weight = mass x acceleration). Mass will remain constant and that means that whether the object is on Earth or on Mars, its mass remains the same. Thus, the object will still have 2.00 kg as mass on Mars.
Answers: 2.00 kilograms
If you or any else needs the answer for this it is C. +1.11 m/s.